ADTHOR TITLE	Prince, Henry 3. open-Concept School for Indian Education. Sault Ste. parie, Michigan, title III, ESEA 1973-74. External Evaluation Report.
INSTITUTION	Sault Sainte Marie Public Schools, Mich.
SPONS AGENCY	Bureau of slementary and Secondary saucatio
	(DHEM/OE). Dashington, D.C.: Michigan State Dept. of
	Eaucation, Lansing.
pub date	19 aug 74
NOTE	67p.: For related document, see ED 091 117; Best Copy available
EDRS PRICE	UF-\$0.76 HC-\$3.32 PLOS POSTAGE
DESCRIPTORS	*Acaderic Achievement; Alternative Schools; *american
	Indians; Comunication skills; *Comparative analysis;
	Educational Assessment; Blementary Education;
	Followup Studies; *Open Education; Parent Reaction;
	*Program Evaluation; Questionnaires; Standardized
	Tests; Student attitudes; Teacher Aides; Teacher
	Attitudes
IDENTIFIERS	Elementary Secondary Education Act Title III; ESEA
	Title III; Michigan; *Ojibways

ABSTRACT

An external evaluation reporting on the Title III, Elementary and Secondary Act, Open Concept School Program for Indian Education, focuses on cognitive and psychomotor development of experimental students, perceptions of the program (staff members, parents, and non-experimental teachers). and program accomplishment of other objectives, primarily process and procedural aims. Comparative data gathered over a 1 year period are presented in tabular form with accompanying narrative. Data are derived from teacher and on-site observations, parent and staff questionnaires, staff interviews, a junior high school follown study, standardized academic achievement tests, affective domain results, and a diffusion study. In terms of program objectives, data reveals that: the staff has developed alternate staffing patterns and flexible student management practices, introduced early childhood education for preschoolers, provided individualized laboratory instruction, established learning centers in major subject areas, and increased parental understanding of educational objectives. Students have not improved their knowledge, comprehension, and application in language arts by an 0.75 grade level equivalent, but have accomplished these goals in mathematics. Generally the open concept program has been successful in meeting its objectives; its major weakness involves the language arts and reading components, and staff communication.
(JC)

PREFACE

This evaluation report focuses on three areas: (1) cognitive and psychomotor development of experimental students; (2) perceptions of the program by staff members, parents, and nonexperimental teachers in the local and regional aras; and (3) program accomplishment of other objectives, primarily process and procedural aims.

The achievement data has been reported by grade level for the experimental students, even though grades, as such, are not part of the school's structure. This method was employed so that comparisons with control school pupils could more sassily be made, and so that grade-level equivalent gain could be identified.

The evaluator is deeply indebted to Dr. Donald Hastings, who performed the statistical analysis and who contributed many suggestions for evaluation procedures and data interpretation.

Table 1 Ratings of Classrooms by Observers
2 Experimental Parent Views of Open-Concept Education
3 Staff Perceptions of Program Proximity to Ideal Open-Concept
4 Staff Perceptions of Program
5 Staff Views of Strangest, Weakest Segments of Open-Concept Program

7 Student Selection of Optional Junior High Courses

8

9 Required Course Grade Distribution

Otis-Lennon Mental Ability Pre-test Scores Otis-Lennon Mental Ability Test Gain Scores

Purdue Perceptual Motor Survey Raw Score Gains: Balance

one25

31 Smiling Face Test: Percentages
32 Characteristics of Experimental School: non-experimental teachers' perceptions
33 Characteristics of Experimentai School: out-of-town teachers' perceptions
34 Perception of Program Objectives: non-experimental teachers
35 Perception of Program Objectives: out-of-town teachers

37 Perception of Processes and Frocedures: non-experimental teachers Michigan Assessment Pupil Attitude Data: District Reselts " " " " " : Experimental School Results
40
Otis-Lennon Mental Ability Post-test Scores
Preface 1
Observation of Program Teachers 2
On-Site Observations ols
Parent Questionnaire 6
Staff Questionnaire 9
Staff Interviews 14
Junior Hiph School Follow-up 18
Review of Achievement Data 22
Review of Diffusion Study 43
Conclusions and Recommendations 51
Appendix 53

In llovember 1973, two trained observers visited each classroom and learning center in tha cxperimental and control schools. All teachers were observed for a minimum of one hour by each observer.

An observation rating scale adapted from an instrument developed by Walberg and Thomas was employed. 1 Their scale was reduced in size from fifty items to twenty for manageability. Observers indicated the frequency of occurrence of erents in the classroom to support each statement of the rating form ($1=$ never, $5=$ always).

In order to determine whether the experimental school differed significantly in operation from the control school, means and variances were compiled on each item. Prior to use of the t-test, non-homogeneity of variance was checked and some items were excluded on that basis. Results ars indicated in Table 1.

TABLE 1
Ratings of classrooms: experimental, control

$$
\begin{aligned}
n & =16,18 \\
d f & =32
\end{aligned}
$$

Statement Experiment	Experimental Mean	Control Mean	t
Each child has the same text and materials.	1.19	3.78	-6.78\%
Many different things go on simultansously.	4.94	2.44	$+6.38 *$
Children do their own work without help from other children.	1.94	4.11	-7.51*
Chilaren, with their teacher's help, determine their own routine auring blocks of class time.	4.75	1.67	+7.93*
Chiidren work individually and in small groups at various activities.	4.88	2.38	+7.47\%

_non?

Statoment Experimental Mean
Children are not supposed to move about the room without asking permisaion.

Teacher uses much time in 4.75 2.11 $+7.83 \%$
individualized observing and questioning.

The teacher prefers that chil- 1.06 dren not talk when they are supposed to be worlding.

Children voluntarily group and regroup themselves.

The teacher plans and sched- 1.38 ules the children's act-
. ivities through the entire day.

The teacher groups children 3.31 2.11 $+2.41$ for lessons directed at specific needs.

Children expect the teacher 2.44 4.28 -4.59 \# to correct all their work.

The work children do is divided 2.44 into subject matter areas.

The teacher's lessons and 1.13 assignments are given to the class as a whole.

Children spontaneously look at 4.56 and discuss each other's work.

The teacher bases her instruct- 4.94 ion on each individual child and his interaction with materials and equipment.

Children work directly with $\quad 4.88$
evailable manipulative materials.

Children may voluntarily use $\quad 4.50$ other areas of the building during their school time.

The teacher tries to keep all 1.44 children within her sight so that she can make sure they are doing what they are supposed to.

TABLE 1 (cont.)

Statament	Experimental Mean	Control Mean	t
Children help one another.	4.05	2.11	$+6.22 \%$

The two schools diffored prinarily in the areas of teacher interaction with students, student grouping for classroom assignments, visual awareness of student activity by the teacher, and student modification se learning groups. The two schools are most similar in the frequency of subject matter division of learning, and in the frequency of grouping for specific student needs.
*3tatistically signipicant at the . 001 level.

During the course of the year the ovaulator visited the experimental school at lasist once a month (and usually nore often) to observe the learning activities, meet with the staff, and collect data an it became available. A brief report of each visit was furnished periodically to the staff for consideration. A review of the year-long observation reports follow.

The first report focused on two curxicularareas: carear education and language arts. Posters and bulletin boards promoting carear education activities were clearly visible in the eariy portion of the school jear, and they continued to ba visible and updated throughout the remainder of the school year. The increased attention to career awareness is in part due to the Career Education Norkshop that the Experimental teachers attended in August, 1973. The staff cleveriy linked these activities with social studies activities emphasieing Indian heritage at the beginning of the year, and this linkage, while not as successful later in the year, was attempted at various times.

The language arts area's utilization of standard workbooks (or dittoed facsimiles) created some problems, for the less motivated children occasionaliy copied notebook pages rather than attempted to understand concepts and develop skills. This problem endured in varying degrees throughout the year. The key difficulty in the language arts area seemed to be the generation of maximum language arts development with a minimum of forced motivation. The staff worked to solve this problem throughout the year but they were not totally successiful.

The second report indicated that the approach utilized at the begimning of the year -- diagnosis and prescription for cognitive learning deficiencies -- had waned somewhat in frequency. Some staff nembers
continued to utilize this approach with varying degraes of success, while othar: were elther unsuccessful or disappointed with the success rate achiaved that they apparently abandoned it.

Small-group work by children and teacher-directed small-group lessons were not as effoctive as they could have been. In-service tine should be devoted to this area.

The language art segment of the curriculum continues to be a trouble spot which needed to be remedied. Interest in laaguage arts activities seemed low at this time.

Opportunities for above average growth by above average students seemed enormous; however, problems continued for the less motivated students and those students of below average skill at the upper elementary level.

The third report focused on items of concern mentioned above, as well as the need for modification of learning center activites to attract less motivated students. Serious consideration of learning center modification seemed inperative.

A review of staff minutes for 1973-74 indicates that the evaluator's periodic reports were generally discussed at staff meetings. Occasionally, some suggestions led to immediate change in aspects of the program. However, some important segments of the reports either were not discussed or were apparentiy considered superficially. The prime focus of staff meetings should be individual student difficulties and program adjustment; for improved student learning.

A survey of experimental school parents was arranged in order to identify if the open concept approach to elementary education was becoming institutionalized. A questionnaire similar to the one utilized in the 1972-73 evaluation was employed. Hesults are tabulated in Table 2.

TABLE 2

Experimental parent views

 of Open-Concept Education$$
n=30
$$

Statement
Does your child seem satisfied with school this year?

Is your child doing better in school this year?

Do you know your child's teacher better this year?

Do you like the open-concept program for your child?

Have you visited your child's school this year?

Does your child tell jrou about what he or she does in the program? 10000

Is your child more interested in school this year?
$\begin{array}{lll}77 & 7 & 3\end{array}$
13
Do your friends or neighbors know what the open-concept program is?
$57 \quad 10$
33
Do you feel that your child is learning more this year compared to other years?
$70 \quad 10$
17
3
Have jou attended a school council, PTA, or advisory council meeting this year?
$\begin{array}{llll}47 & 50 & 0 & 3\end{array}$
Have your feeling3 toward the open-concept program changed this year?
$33 \quad 47 \quad 10$10

Stntement Yes № Not sure Ho answer
Do you like the program nore this year than last year? $60 \quad 131710$

Have you been at a parent conference with your child's teacher this year? $100 \quad 0 \quad 0 \quad 0$

Does your child like school mere this year than last year?

Do you think the open-concept program is better for your child than a regular program? 57 20 23 0

The Finlayson Open-Concept Program wants children to:
3f (a) learn whatever they want all day by themselves.
\qquad (b) learn what the teacher wants them to learn and when the teacher says so.
\qquad (c) learn what the teacher chooses but when they want to.

57
(d) Leam what the teacher and child together choose but in the order and way the child wants to.

20
(e) no answer.

Important findings include the results that 60% of the respondents liked the program for their children, and that $70, \%$ felt that their children were learning move this year. Also, 57% asserted that the openconcept program was better for their children than a regular program.

Unfortuately, the number of respondents dropped from 67 in 1972-73 to 30 in 1973-74. Since there are ovar one hundred families, the response rate is approximately 30%, and inferences based on such a small return are tenaous. In general, the respondents seemed satisfied with the

$$
-7-\quad n+3
$$

school. Additional efforts must be made to increase the response rate on parental questionnaires, so that a more accurate assessment of parentail feeling might be obtained.

In Miay, 1974, a questionnaire was distributed to the staff members at the experinental school; its purpose was to develop a profile of the staff's views of the program and its operations.

All professionals and paraprofessionals were asked to rate the presontiy operating open-concept program in terms of its proximity to an ideal. open-concept program. Table 3 contains resuits of the ratings.

TABLE 3
Staff Parceptions of Program
Proximity to Ideal Open-Concept* $n=9,9$

Statement	$\begin{gathered} \text { Teachers' } \\ \text { Mean } \\ \hline \end{gathered}$	Aides' Mean
Students are developing better attitudes and a sense of responsibility.	2.89	2.89
Staff members respect and trust one another.	3.78	2.67
Tha princinal is committed to the open-concent.	3.00	1.89
Students are learning the basic skills.	3.00	2.78
Students are developing curiosity and creativity.	2.78	2.44
The princtipal is helpful and supportive.	2.67	1.89
Teachers have a great deal of influence on the program.	3.34	1.87
This is a well integrated program.	3.34	2.62
There is good communication with parents.	2.79	3.88

[^0]Table 3 reveals that the teachers view the open-concept program as approximating the ideal in three areas: principal support, commanication with parents, and student development of curiosity and creativity. The program is most distant from the ideal on staff trust and respect.

On the other hand, the paraprofessionals view the program's closest proximity to the ideal in three areas: teacher influence on the program, principal support, and comnitment of the principal to the program. The program is considered weakest in the area of commanication with parents.

Table 4 presents the data of Table 3 in a more visual form which clearly indicates the differing perceptions of the professionals and the paraprofessionals. Obviousiy, there seems to be a communication gap between the teachers and the aides for some of the perceptions to differ so widely. In-service attention should be devoted to this matter.

Statement

Students are developing better attitudes and a sense of responsibility.

Staff members respect and trust one another.

The principal is committed to the open concept.

Students are learning the basic skills.

Students are developing curiosity and creativity.

The principal is helpful and supportive.

Teachers have a great deal of influence on the program.

This is a well integrated program.

There is good commanication with parents.

\ldots Teachers' Perceptions

Teachers and aides responded to questions about the operativa of the program. In most categories, they generally agreed; in those areas of disagreement, the differences will be pointed out. Teachers and aides felt that they had enough privacy in the school most of the time; aides felt that students needed more privacy, while teachers felt that students had enough privacy most of the time.

Teachers and aides indicated that film viewing in learning centers occurred approximately once a month, while filmstrip or slide viewing occurred more than once a month. Both frequencies seen rather low for such a program.

Tape recorders and listening stations were reportediy used three or four times a month, on the average. This seems a low frequency also. Availability of operable hardware to all teachers and learning centers seems to be the major reason for the limited use of these audio-visual materials.

Both teachers and aides indicate that older children work with younger children most of the time; observation data reported in the first section of the report verifies this perception.

Teachers report they spend, on the average, four to five hours por week in individual planning and preparation, while aides spend approximately one to two hours per week. In joint planning with teachers, aides spend less than an hour per week, while teachers report they spend two to three hours in such activity. Teachers also report they spend approximately one-fourth of their time working with their colleagues.

A surprising finding is that some experimental teachers rate their teaching style as moderately traditional. Perhaps these staff members have had difficulty adjusting to the open-concept program; the in-service workshop should address itself to this question.

Additionally, two of the teachers indicate that they have difficulty
in integrating new methoris and materials into their teaching style.
The worishop should focus on this item also.
Finally, teachers and aldes were asked to submit suggestions for program improvement. Suggestions, of varying frequency, were provided by the nine teachers, as follows:

1. Devalopment of an effective system of discipline
2. Improvement of staff commuication
3. Increased coamunication between staff and administration
4. Equitable distribution of aides between early and later elementary segments of the program
5. Estabilishment of a standard set of reporting and recordkeeping procedures
6. Utilization of the gurpounding outdoor environment
7. Bi-monthly teacher meetings, outside the school, to review accomplisknents and modify the program
8. Increased communication with parents
9. Development of agreement on school goals and means of achieving them
10. Development of means to reduce interruptions by children when tutoring an individual student
11. Reintroduction of science laboratory

Paraprofessionals, on the other hand, submitted the following list of program suggestions:

1. Increased commanication among the staff
2. Development of special programs for "low motivation" students
3. Increased emphasis on basic skill development
4. Increased parental involvement
5. Increased guidance
6. Introcuction of short-term goals for children
7. Stronger leadership
8. Staff meetings that focus on discussion of student needs

The In-service workship should attend to these suggestions and consider the possidility of implementation. Since the teachers and aides agree on several suggestions, it would appear that staff consensus exists and needs only to be utilised in these areas. Other suggestions say require prolonged discussion before a decision is made.

An interview of staff members was scheduled at the end of the school year to assess their perceptions of the program and to fill in possible gaps of information that the staff questionnaire failed to elicit. The roving teachers (art, music, physical education) were exciuded on the basis of infrequent opportunities to work closely with the permanent staff.

In terms of the curriculum, teachers viewed career education and the preschool learning center as the strongest and most effective negmeats of the program. The aides, on the other hand, viewed the reading and math components as the strongest in the program.

Teachers reported that science and the "lab" learning centers were the weakest segments of the program, while the aides rated science and language arts as weakest. A tabular form of the staff's views is found in Table 5.

TABLE 5
Staff Views of Strongest, Weakest Segments
of Open-Concept Program
$n=19$
Second Second
Program
Seginent
Science
"Lab"
$0 \quad 0 \quad 1$
4
-9
Music
0
0
1
1
-3

Social Studies	1	1	3	0	-0
Indian Culture	0	1	0	0	+1
Language arts	4	1	-	7	0
Reading	4	2	1	2	+5
Math	3	4	1	2	+5

TABLE 5 (cont.)
Starf Vituws of Strongest, Weakest Segments

Frogram Segment	Strongest	pen-Concept Second Strongast \qquad	Program Second Weakest -1	Weakest -2	Total
Physical Education	2	1	0	0	+ 5
Preschool	1	4	0	0	$+6$
Carear Education	3	1	0	0	$+7$

A review of this table indicates that the selence and "Laboratory" components of the program need to be discussed and revised substantially. Additionally, music and social studies elements of the program should be carefully reviewed during the in-service workshop.

The staff members were asked to specify the major strength and the major weatmess of the open-concept program. Teachers listed the following as major strengiths:

1. Children accepting partial responsibility for their own education
2. Visible changes in affective bshavior
3. Availabie option for students to group and regroup with others
4. Option to identify children's learning patterns
5. Improvement in self-concept of children
6. Total openness of children
7. Acceptance of program by children
8. Flexibility of program

Paraprofessionals listed the following strengths:

1. Positive attitude of children toward staff members
2. Spontaneity of children
3. Comminication between children and staff
4. One-to-one basis for instruction
5. Opportunity for children to work at their own rate
6. Individual interaction with each child

On the other hand, teachers reported the major weakness as the
following:

1. Lack of uniform assessment process by all teachers
2. Weak communication among stafi about childen
3. Iack of comnunication
4. Iack of some structure to program
5. Lack of commitment of some staff members to "openess"
6. Failure to offer numerous activities for younger children
7. Interruptions during activities by wandering students
8. Inadsquate management and disciplinary procedures
9. Insufficient time for responsibilities and duties

Teacher aides perceived the following as weaknesses of the program:

1. Lack of commanication among staff members about students
2. Poor commanication among staff members
3. Lack of student respact for some staff members
4. Constent need to prod certain, low motivation students
5. Conflict between hore and school discipline patterns
6. Lack of reading skill improvement by pupils
7. Student concentration time span not considared

All staff members were encouraged to provide program suggestions during the interview. Nany of these suggestions are the same ones which were reported in the staff questionnaire.

Teachers were much more vocal in suggesting program modifications. The surprising reault reported in the questionnaire section regarding the moderately traditional teaching style of some staff members is supported by some of the suggestions, which follow.

1. More uniform methods of instruction
2. Errphasis on affective development
3. More frequent meetings to promote staff unity
4. More time for individual conferences with aides
5. More adranced planning in groups by teachers
6. More staff eensitivity to Indians
7. Utilization of "open rooms" rather than an "open school" for younger children
8. Development of an isolation site for behavioral problems
9. Better utilization of monthly in-service planning time
10. A Minimum time for stucents to remain in a leaming center
11. More masic
12. Equal distribution of privileges

Teacher Aides provided an interesting conglomeration of program suggestions which follow.

1. Nore follow-up of students
2. Nore commaication among staff members
3. Improvenent of math and so:ial studies learning centers
4. Improved appearance of learning centers
5. A training program for aides in the open-concept program
6. Utilization of a structured segment for a larger portion of the school clay.
7. Increased home support for the propram
8. More sequential leaming in learning centers
9. Utilization of "open rooms", not "open school"
10. Elimination of hall wandering
11. Elimination of cooking component of "lab" center

Staff members were also provided with the opporturity to suggest cvaluation procedure (internal and extemal) modifications. Their
suggestions are as follows:

1. Utillzation of a team evaluation approach
2. Elimination of standardized testing
3. Uniform evaluation process for conferences with students
4. Dispersal of testing dates
5. Periodic teacher-made tests
6. Utilizotion of internal professional visits for advice
7. More utilization of skilis booklet
8. More conferences with students

In general, most staff members are somowhat satisfied with the existing program, but they wish to modify it and improve it.

A component of the ovaluation design this year was data collection at the Junior high level; the performance of former experinental school students in a more traditional setting was the focus of concern.

Data was collected in three specific areas: absenteeism (a problem in the past), disciplinary actions (likewise a former problem), and classroom options and performance. Results are tabulated in Table 6.

TABLE 6
School Performance: Former experimental students Percentages

Category	Grade 7		Crade 8	
	$\begin{aligned} & \text { Sem. } \\ & (n=31)^{1} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n=? 9)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. } 1 \\ & (n=19)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n=16)^{2} \end{aligned}$
Daily absentee rate	6\%	16*	8	19**
Discipline referral ratertar				

Academic failure rate	16	4	5	6
- Math	16	5	24	44
- English	33	24	6	19
- Social Studies	26	4	32	25
- Science	13			

* Of the total absence days (438), four students accounted for 176 absences; their rate was $48 \%^{\circ}$. ** Of the total absence days (273), four students accounted for 127 ; their absentee rate was 34,6 .
*** Discipline referral rate was calculated only at the end of the school year; it indicated referrals of one or nore times.

Table 6 indicates that former experimental students who were in the seventh grade decreased their failure rate remarkable in three of the four basic subjects. Eighth graders from the experimental school did not rake such reversals.

For the seventh graders English and Social Studies are the subjects
which are nost difficult，while for eighth graders English and Science are the moat difficult．The improved math program at the experimental school seems to bo having some long－term effect，as the math failure rate is lois in both grades．Increased attention to the language arts， science，and social studies components of the open－concept experimental program is imperative，if long－term positive effects are desirable．

The absentee rate is very similar to the previous year＇s rate for both grades．The difficulty of winter travel from Sugar Island，a source of students who attended the experimental program，skews the second se－ mester attendance rate somewhat．

The discipline reforral rate continues to decine．It is expected to remain at a low level in the future．

Junior high school pupils have the opportunity to solect optional courses to complete their schedules．The choices of former experimental school students are reported in Table 7. TABLE 7
Student Selection of Optional Courses
Former experimental school students TABLE 7
Student Selection of Optional Courses
Former experinental school students TABLE 7
Student Selection of Optional Courses
Former experimental school students Grade 7
Option

Option	Grade 7		Grade	
	$\begin{aligned} & \text { Sem. } 1 \\ & (n=31)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n=29)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{1} \\ & (n=19)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n-16)^{2} \end{aligned}$
Home Economics	－＊＊	10	12	－－－
Shop	\cdots	14	7	2
Art	9	3	1	1
Band	2	2	2	1
Electronics	－－－	－－	－－－	1
Choir	4	5	4	4
Creative Stitchery	3	3	－－．	－－＊
Small Gas fingines	5	4	3	4
Conservation	6	7	\cdots	2
Competitive Swin	2	4	－－－	－－－

Option	Grade 7		Grade	
	$\begin{aligned} & \text { Sem. } 1 \\ & (n=31)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n=29)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{1} \\ & (n=19)^{2} \end{aligned}$	$\begin{aligned} & \text { Sem. }{ }^{2} \\ & (n-16)^{2} \end{aligned}$
Home Economics	－＊＊	10	12	－－－
Shop	\cdots	14	7	2
Art	9	3	1	1
Band	2	2	2	1
Electronics	－－－	－－	－－－	1
Choir	4	5	4	4
Creative Stitchery	3	3	－－．	－－＊
Small Gas fingines	5	4	3	4
Conservation	6	7	\cdots	2
Competitive Swin	2	4	－－－	－－－

12
7
1
2
$4 \quad 4$ 3 $4 \quad 3 \quad 4$ 7 4

A review of the grade distribution at the end of the second semester for the four required courses indicates that the grade eight students seem to continue their performance levels in math and english, but in science and sccial studies there seems to be slippage in grades. Table 8 illustrates the results.

TABLE 8

Required Course Grade Distribution: Second Serester
Former exporimental students: grades 7,8

Category	Grade 7 ($\mathrm{n}=29$)					Grade B ($n-16$)				
	A	B	C	D	E	A	3	C	D	E
English	2	3	9	7	1	2	1	8	1	2
Math	2	9	13	4	1	3	4	4	4	1
Science	3	5	10	10	1	2	1	3	7	4
Social Studies	1	1	8	12	7	2	1	7	3	3
Commanication Skills*	2	2	3	1	0	0	0	0	2	0

[^1]The seventh graders from the experimental school achieved A's or $B^{\prime} s$ at the rate of 25%, while eighth graders do so at a rate of $23, \%$. This indicates only a slight decrease for the eighth graders from their rate as seventh graders (27%). In both grades, experimental students have the hiphest A, B rate in math.

On the other hand, seventh graders received $D^{\prime} s$ and $R^{\prime} s$ at a rate of 38%, whilo eiphth graders received D's and E's at a rate of 42%. This indicates a slight increase for the eighth graders from their rate as seventh graders (330).

It seems that the experimental program has its greatest academic sphere impact in math, and that student academic patterns extribited in the seventh grade continue through the eighth grade without appreciable change.

The evaluator had intended to survey the junior high school staff and ask them to rate the former experimental school students in comparison to other elementary school graduates. During preparation of the survey, the evaluator held conferences with the funior high assistant principal and other staff members; they indicated that most funior high teachers would have great difficulty in making such judgements, since the former experimental school students are not distinguishable from the other students on an academic or disciplinary basis. On the basis of their suggestions, the evaluator, through the auspices of the assistant principal, requested any junior high staff members to submit, anonypously, a reporting of any academic or disciplinary identification of former experimental school students, i.e., any indication that these students stood out. No reports were received. This substantiates the assistant principal's claim that present-day experimental school students are indeed different from those in the past; they are not isolatable on academic or disciplinary grounds from other students.

A pre-post, experimental-control comparison research design was employad is all appropriate areas so that within-group and between-group results could be identified. This quasi-experinental research design was roquired, since randomization of procedures and of student assignment could nct be utilized.

For most catergories; :.e., achievement test batteries, IQ testing, and psychomotor skill review, post-test scores from May, 1973, were used as pre-test scores for the 1973-74 school year. The scores were assumed to be slightly higher than September, 1973 test scores would have been, due to loss of retention during summer. Students in levels corresponding to grades 2, 3, and 5 were pre-tested in September, 1973 on the Stanford Achievement Test, since first-year students were new, and grade 3 and 5 students' batteries changed categories irom grades 2 and 4, rem spectively.

Post-tests were administered in May, 1974. All testing was conducted in a regular classroom or learning center context, except for the Purdue Perceptual Motor Survey which was administered at the experimental school to both groups.

Instrumentation

The Tests of Basic Experiences (TOBE) was administered to preschool and kindergarten to measure gains in general achievement in four curricular areas: mathematics, science, language, and social studies.

The Otis-Lennon Mental Ability Tests were given to students in classrooms and leaming centers corresponding to grades 1 to 6. This instrument was employed to identify the similarity or dissimilarity of the intellectual ability of the students in both schools.

The Purdue Perceptual Motor Survey was utilized to assess psychonotor and perceptual development. All students in the experimental
school were tested, but very few control school students were tested, with no control school data available at the pre-school and fourth grade level. Since scoring involves considerable subjectivity, and since the administering staff was selected experinental school staff members, the results require careful scrutiny.

The Stanford Achievement Iests were empleyed as the academic achievement instruments. The various batteries employed yielded results in six to ten categories; curriculary rareas from reading and language to mathematics and science are included. One difficulty encountered was the utilization of SATs at an atypical level; the experimental students formerly scored at a low level on the Michigan Assessment Test, and the original evaluation design took this fact into account. Though the testing was at an atypical level, both experimental and control school students took the came batteries, so that comparison of gain scores is not statistically unsound.

IQ Results

Initially, an analysis of prentest results of the Otis-Lemnon Mental Ability Test was made to determine similarity or dissimilarity of experimental and control school student populations. Results are tabulated in Table 9. T-tests applied to this data indicate that the two populaiions were significantly different at only the third grade level.

TABLE 9
Otis-Lecnon Mental Ability Test
Pre-test scores: experimental, control

Grade	Experimental			Control			df	t
	n	mean	S.d.	n	mean	s.d.		
1	18	95.67	8.73	27	95.74	12.91	43	-0.02
2	26	101.46	12.69	23	106.70	13.71	47	-1.39
3	24	98.04	13.00	32	112.38	13.40	54	-4.01*

TABLE 9 (cont.)

Grade	n	$\begin{gathered} \text { xperimen } \\ \text { meann } \end{gathered}$	${ }^{\text {al }} \text { s.d. }$	n	$\begin{gathered} \text { Control } \\ \text { mean } \\ \hline \end{gathered}$	s.d.	df	t
4	23	101.87	14.79	33	110.27	12.88	54	-2.26
5	22	91.59	44.44	36	100.56	34.21	56	-2.32
6	24	92.63	14.88	28	100.29	34.24	50	-1.89

* Significant at the . 01 level

A review of the post-test results in Table 10 indicates that at all grade levels experimental and control school students made similar gains in scholastic aptitude. The loss at the fourth grade level in both schools is similar to the loss that occurred in the previous year. These findings seem to indicate that the experimental program is as effective as a conventional elementary program in improving scholastic aptitude.

TABLE 10
Otis-Lennon Mental Ability Test
Pre-post gain scores: exper.imental, control

Grade	Experimental			Control			df	t
	n	mean	s.d.					
1.	18	+6.89	9.42	27	+8.11	12.44	4.3	-0.38
2	26	+0. 19	9.89	23	+1.70	7.31	47	-0.60
3	24	$+1.54$	10.40	32	-2.19	6.32	54	+1.66
4	23	-7.13	12.20	33	-3.27	9.33	54	-1.34
5	22	+1.42	8.53	36	+0.39	6.80	56	+0.50
6	24	+2.46	7.92	28	+2.86	4.99	50	-0.22

Post test IQ scores are found in the Appendix

Psychomotor Re:silts

The results indlcated in the following tables relative to psychomotor skill development, in the experimental and control schools are of
such a nature that they should be carefully scrutinized, especially in view of the subjective scoring that the Purdue Perceptual Motor Survey involves. In view of last year's results that indicated the mosi pronounced changes in psychomotor scores occurred at the K - 3 level, large numbers of control students at that level should have been tested and only a selected number at the 4×6 grade level. Yet, as the tables illustrate, the reverse occurred. No data was provided for fourth-grade control students, for they were on a field trip the day of tosting. In view of the minimal significant differences, consideration should be given to " mination of the psychomotor testing or utilization of a more refined and objective instrument.

TABLE 11
Purdue Perceptual Motor Survey
Raw score gains: Balance Experimental Control
Grade
\boldsymbol{n} mean gain
1
$17 \quad+0.18$
n mean gain df t
$25+0.44$
$3 \quad+0.67$
$18-0.22$
2
+0.48
+0.13
$11 \quad+1.55 \quad 34 \quad-1.77$

3
$\begin{array}{ll}21 & +0.48 \\ 23 & +0.13\end{array}$
15
$+0.13 \quad 34 \quad-0.18$
4
$22+0.45$
20
$+0.35 \quad 40 \quad+0.36$
6
$23 \quad+0.52$
21
$+0.29$
$42+0.82$

TABLE 12
Furdue Perceptual i:otor Survey
Raw score gains: Body Image Experimental
n mean grin
Grade

1
$17+0.35$
$3+0.33$
$18+0.01$
?
$25 \quad-0.16$
$11+1.27$
34-2.27*

3
$21 \quad+0.48$
$23-0.22$
$23-0.22$
15
$+0.67 \quad 34 \quad-0.50$
H
NO data

TABLE 12 (cont.)

Grade	Exporimental		Control		dif	t
	n	n emain	n	gain		
5	22	+0.45	20	-0.35	40	$+1.07$
6	23	-0.004	21	+0.04	42	-0.16

* significant at the .05 leval

TABLE 13

Grade	Purdue Perceptual Motor Survey Raw score gains: Perceptual-Motor Experimental Control Mean gain n Mean gain					
1	17	+5.00	3	+4.00	18	+0.30
2	25	+1,92	11	-0.45	34	+2.18**
3	21	+0.69	15	+0.47	34	+0.25
4	23	-0.78		NO Data		
5	22	+0.50	20	-0.70	40	+1.36
6	23	$+1.43$	21	-7. 33	42	+3.64*

```
* Significant at the .001 level
*Sifnificant at the . }05\mathrm{ level
```

TABLE \boldsymbol{I}_{4}

Grade	Purdue Perceptual Motor Survey					
	Raw score gains: Ocular Control Experimental Control					t
1	17	+1.76	3	+5.33	18	-1.11
2	25	+0.36	11	+1.54	34	-0.82
3	21	+0.57	15	+3.00	34	-2.76 *
is	23	+0.09		1 NO DaTA		
5	$2 ?$	+0.14	20	-0.85	40	$+1.36$
6	23	-0.04	20	+0.60	41	-0.86

TABLE 15

Grade	Raw score gains: Form Porception Experimental Control				BEST COPY ANAL	
	n	mean gain	\underline{n}	mean gain	df	t
1	17	+0.24	3	$+1.67$	28	-1.78
2	25	+0.36	11	+0.91	34	-1.32
3	21	$+1.14$	15	+0.73	34	+0.35
4	23	+0.04		NO DATA		
5	22	+0.36	20	+0. 25	40	+0.31
6	23	-0.52	21	-0.10	42	-0.99
Grade	TABLE 16					
	Purdue Perceptual Motor Survey					
	Post-test Total Raw Scores: Experimental, Control					
	Experimental				Control	
		n	mean			mean
1		17	62.94			
2		25	67.00			
3		21	72.57			
4		23	74.00			
5		22	76.27			
6		23	77.09			

Results illustrated in Table 16 indicate that experimental students achieved the psychomotor objective of a minimum score of 65 on the Purdue survey, except for grade one students. Since the later elementary level scoses greatly exceed the program objective, psychomotor testing should be concentrated only at the K -2 level.

The Test of Basic Experiences (TOBE) was administered to all preschool and kindergarten children in the experimental and control schools. Kindergarten children were compared on mean raw gain scores, as indicated in Table 18.

TABLE 17
Test of Basic Experiences
Post-test scores: experimental, control

Category	Experimental pre-school mean ($n=14$)	Experimental kindergarten mean ($n^{=22}$)	Control kindergarten mean ($n=42$)
Math	25.14	26.54	23.62
Science	25.36	24.27	23.98
Language	26.21	25.14	24.24
Social Studies*	26.146	2.4 .36	23.71

A review of Table 17 indicates that the experimental preschoolers and Kindergarteners achieved higher post-test scores than did control school kindergarteners. The preschool component of the program continues to build a strong base for future scholastic achievement.

TABLE 18
Test of Basic Experiences
Pre-post raw score gains; experimental, control $d f=62$

Category	Experimental meangain	Control mean gain	t
Kath	+9.41	+3.62	$+5.39 \%$
Science	+5.85	+5.02	+0.86
Langauge	+8.32	+4.48	$+3.49 \% *$
Social Studie:	+8.50	+4.62	$+3.67 \% *$

```
* Elgnificant at the .001 level
```

** Significant at the . 002 level

The previous year's success in math and social studies has been continued, and the language component has now assisted experimental kindergarteners in achieving at a significantly higher level.

The Stanford Achievement Tests were utilized as prentest and posttest batteries, except for the first graders. Since the control school first graders were involved in another project which required use of the Stanford Early School Achievement Test as a pre-test, both schools utilized the SESAT. However, since grade equivalents do not exist for the SESAT, only post-test grade equivalents are reported for the first graders. Even though the above mentioned project arbitrarily assigned a pre-test grade equivalent level of 0.8 for all categories, the evaluator judges this approach to be less than sound. If this approach were taken, the experimental first graders would have achieved the program's objectives in all categories of the SAT.

Additionally, since the SAT was used atypically, i.e., Primary I, Primary II, and Intermediate I were used in grades 2, 4, and 6, respectively, grade equivalent norms for such usage were intended to be used. However, the SAT publisher indicated that such norms for atypical usage do not exist. Yet since both groups were administered the same batteries in the identical atypical manner, comparison of raw score gains is statistically sound.

TABLE 19

> Stanford Achievement Test: Grade 2
> Pre-post raw score gains: experinental, control df $=40 \%$

Subtest	Experimental ($n=24$) meangain s.d.		$\begin{array}{r} \text { Control } \\ \text { mean gaj } \end{array}$	$\begin{gathered} n=18) \\ 3 . d_{0} \end{gathered}$	t
Vord Heaning	+8.96	4.51	+12.39	4.39	-2.47%
Paragraph Meaning	$+8.50$	9.36	+20.78	6.52	-0.88

Subtest	$\begin{aligned} & \text { Experimental (} n=24 \text {) } \\ & \text { mean gain s.d. } \end{aligned}$		$\begin{aligned} & \text { Control } \\ & \text { mean gain } \end{aligned}$	$\begin{array}{r} n=18) \\ \text { s.d. } \end{array}$	t
Vocabulary	+5.58	3.80	+6.78	5.05	-0.88
Spelling	+7.13	6.45	+6.53	2.76	+0.36
Word Study Skills	+8.13	7.53	+8.61	5.72	-0.23
Arithmetic	+11.17	12.37	+12.89	5.78	-0.55

\# $n=27$ and $d f=39$ for spelling subtest. H* Significant at the . 02 level

Table 19 indicates that the control school pupils significantly exceeded the experimental school students in oniy one category, word meaning. In all other categories the two schools are comparable in achievement levels in the second grade.

TABLE 20
Stanford Achievement Test: Grade 3
Pre-post raw score gains: experimental, control

$* N=33$ for tine control group and $d f=53$ for axithmetic subtests ** Significant at the .05 level *** Significant at the . 02 level

Experimental school pupils made significantiy greater gains in two categories: spelling and arithmetic computation. In all other categories, the two groups are coinparable.

A revier of Table 21 indicates that the control school pupils significantly exceeded the experimental pupils in one category: axithmetic computation. In the other categories, raw score gains favored the control school but not at a significant level.

TABLE 21
Stanford Achievement Test: Grade 4 Pre-post raw score gains: experimental, control

[^2]Pre-post raw score gains: experimental, control

$$
d f=58
$$

Subtest	Experiment mean gain	$\begin{gathered} 1(n=22) \\ s, d . \\ \hline \end{gathered}$	Contro mean	$\begin{array}{r} (n=38) \\ s . d_{0} \end{array}$	t
Word meaning	+3.68	4.40	+3.05	3.62	+0.60
Paragraph Meaning	+7.00	5.40	+6.26	6.58	+0.45
Spelling	$+1.00$	5.18	+3.74	4.45	-2.16**
Word Study Sxills	+5.82	6.61	+3.82	5.16	+1.32
Language	+10.86	10.84	+8.84	6.88	+0.89
Arithmetic Computation	+6.73	8.11	+7.74	5.48	-0.57
Arithmetic Concepts	+1.64	5.59	+2.44	3.29	-0.71
Arithmetic Applicatio	ion +2.24	4.48	+3.13	4.39	-0.74
Social Studien	$+2.33$	4.05	+2.11	5.94	-0.53
Science	+9.14	7.75	+3.95	9.64	+2.29x-4

* Inal for the experimental group and df=57 on science, social studies, and arithmetic applications subtests.
**Significant at the .02 level
Table 23 illustrates the gain scores for sixth graders. The experimental pupils made statistically significant gains is one category: work study skills.

TABLE 23
Stanford Achievement Test: Grade 6
Pre-post raw score gains: experimental, control

$$
d f=50
$$

Subtest	Exnerinon mear pri	$\begin{gathered} (n=24) \\ \text { S. } \\ \hline \end{gathered}$	Control ($n=? 8$) meangain s.d.		t
Vord Heaning	+5.25	4.26	+4. 32	3.73	+0.84
Paragraph Meaning	+5.21	6.37	+3.68	7.56	+0.78
Spelling	+4. 58	$5.2 ?$	+5.82	5.55	-0.82

Subtest	Experimental (nwil) mean pain s.d.		Control ($n=28$) mann pain sod.		t
Hord Study Skills	+7.79	8.8?	+3.14	5.09	+2.37*
Language	+6.67	34.81	+7.82	7.78	-0.36
Arithmetic Computation	+5.13	4.90	+6.04	5.63	-0.62
Arithmetic Concepts	+4.63	4.09	+4.04	4.57	+0.49
Arithmetic Application	+2.8e	3.43	+3.46	4.32	-1.45
Social Studies	+3.83	6.82	+3.96	5.49	-0.07
Science	+5.33	6.98	+7.64	6.75	-1.21

* Significant at the . 05 level

Another approach to review of the cognitive achievement data involves comparison of the post-test grade level equivalents for experimental and control school pupils. Tables 24 to 29 raport this data.

In Table $2 l$ one should notice that in ondy one category, paragraph meaning, are the experimental school students below grade placement at the time of testing. In two categories, work reading and paragraph meaning, the control school pupils are slightiy below grade leval. This result for the experimental school is in maried contrast with the typical performance in the past.

TABLE 24
Stanford Achievenent Test: Grade 1
Post-tert grade level equivalents: experimental, control

$$
n=18,30
$$

SuSt.not

Yo
P
V
S
A

Ennarimentrl unan

$1.80 \quad 2.76$
2.60 1.76

Vocabuiary
1.9\%
1.80

Spelline:
1.83
2.16
:Hord utudy shills**
2.01
2.23

Arithmetic
1.86
2.08

A perusal of Table 25 points out the average gains made by the experimental and control pupils; in the second grade; in one category, spelling, the experimental subjects exceeded the program objective of 0.75 grade equivalent gain. The work study skills average gain neariy meets the objective.

TABLE 25
Stanford Achievement Test Orade 2
Post-test grade level equivalents: experimental, control

Subtest	$n=25,21$ Experimental		Control	
	mean	ave. gain	mean	2ve. pain
Word Meaning	2.28	+0.65	2.67	+0.99
Paragraph Heaning	2.05	+0.58	2.38	+0.75
Vocabulary	2.34	+0.64	2.99	+0.99
Spelling	2.33	$+1.20$	2.76	+1.09
Word Stucy Skills	2.40	+0.70	3.38	+0.85
Arithmetio	2.48	+0.56	2.88	+0.80

In three categories the control school subjects did not make one year's growth, while in only one category did the experimental subjects achieve a year's growth.

In Table zo date indicates that the experimental subjects achieved the program's goal of 0.75 grade equivalent gain in four categories: science, spelling, languge, and arithmetic computation. However, the post-test scores point out the below-grade leval ranking of the experimental subjects. inile the second graders are only slightly below grade Level, the third graders are more so.

Post-test grade level equivalents: experimental, control

Subtest	$n=24,34$ Experimental		Control	
	nean	ave. gain	mean	ave._gain
Hord Meaning	2.80	+0.63	3.66	+0.71
Paragraph Meaning	2.79	+0.70	3.54	+0.54
Science and Social Studies	2.95	+0.75	3.64	+0.68
Spelling	3.03	+1.21	3.51	+0.63
Vord Study Skills	3.20	+0.63	4.40	+0.81
Lencuage	2.45	+0.91	3.20	+0.30
Arithmetic Computation	2.80	+0.78	3.21	+0.37
Arithmetic Concepts*	2.82	+0.56	3.77	+0.64

[^3]In table 27 one can identify the two categories in which project objectives were achieved: science and arithmetic computation. The experimental students are most deficient, grade equivalent-wise, in the language arts area. The control school pupils also exhibit a deficiency in the language arts, but not to the degree of the experimental pupils. More attention to improved language arts leaming centers in the experinental school is imperative.

TABLE 27

Stanford Achievement Te . Grade 4
Post-test grade level equivalunts: experimental, control

Suhtest	$\mathrm{n}=23,32$ Faperimental		Control	
	mean	avo. gain	mean	ave. gain
Word Moaning	3.27	+0.45	4.31	+0.61
Paragraph Mieaning	3.42	+0.56	4.62	+0.76

TABLE 27 (cont.)
Experimental
Subtext
Science \& Social
Studies
Spelling
Word Study Skills
Language
Arithmetic Computation 3.52 Arithmetic Concepts
mean avo. gain

Control
mean ave. gain
$4.57+0.82$
$4.61+0.93$
$5.18 \quad-1.03$
$4.09 \quad+0.64$
$4.98+1.32$
$5.08+0.89$

Mean grade equivalents for Pith graders are located in Table 28. The experimental subjects exceeded the program's objective in four cognitive categories; paragraph meaning, science, arithmetic computation, and arithmetic concepts. Socail studies and spelling categories exhibited the least gain. The control school subjects exhibited the largest average gains in the same four categories.

TABLE 28
Stanford Achievement Test: Grade 5
Post-test grade level equivalents; experimental, control

[^4]Finally, sixth grade students' scores are reported in Table 29. Experimental subjects achieved the program's objective in four categories: word meaning, word study skills, arithmetic concepts, and arithmetic computation. Science mean gain of 0.73 barely made the program objectlive of 0.75 gain. Experimental subjects made the smallest gains in arithmetic applications, language and social studies.

TABLE 29

Stanford Achievement Test: Grade 6
Post-test grade level equivalents: experimental, control $n=24,28$ Experimental
Subtest
Word Meaning
Paragraph Meaning
Spelling
Word Study Skills
Language
Arithmetic Computation

Arithmetic Concepts	5.53	+1.03	6.15	+1.06
Arithmetic Application	5.13	+0.34	6.41	+1.15
Social Studies	5.22	+0.50	6.25	+0.73
Science	5.15	+0.73	6.49	+1.07

A review of Tables 24 - 29 in total provides evidence that the experimental program achieved its cognitive objective of 0.75 grade equivalent sain in two nategorics: science and arithmentic computation. For the later grades the project achieved its objective in arithmetic concepts. For the early grades the project achieved its objective in spelling. Also, the project generally met its objective or nearly did so in paragraph meaning. In all other categories, the project failed to meet its cognitive objective, except in two isolated cases. The language arts
area continues to be the area of major deficiency in achievement, and increased attention should be given to this component. It is recommended that the major portion of the in-service workshop prior to the opening of school be devoted to a thorough examination of the language arts approches utilized in the past, in order to modify or delete ineffectAve elements.

The finding regarding science achievement is surprising, in view of the fact that the science component was perceived by staff members to be the weakest element of the program. Obviously, staff members made judgments on a basis other than cognitive growth stimulation by a particular learning center. Apparently the science learning center was extremely effective across several grades, as was the mathematics learning center.

The data in this area is divided into three categories: absenteelsm, vandalism, and attitudes toward self and school. Regarding aitendance pattems, the monthly absenteeisn rate fluctuated between 3 and 106 during the 197.3-74 school year. The rate for 1972-73 also fluctuated between 3 and 10%. Often, one-third of absentee count reflected preschool absences. Results are in Table 30.
table 30
Experimental School Absenteeism Rate

Month	No. absent	Enrollment	School days	\%
September	103	175	19	3
October	253	173	24	6
November	375	174	20	10
December	220	176	15	8
January	374	177	23	9
February	404	178	20	10
March	362	179	21	9
April	209	179	17	6
May	315	179	23	7
June	65	179	4	9

The absenteeism rate has been reduced considerably from that rate prevalent in years prior to institution of the open-concept program. This does indicate that students a $=$ now more willing to attend and participate in school activities; they seaia to value school more than i.: the past.

Unly four instances of vandailsm were reported during the 1973-74 3thool yeur. They occurred on Octobur 5 (two incident.i), October 20, and january 2?. On the first date, some individuals broke into the school to play basketball; on the same date two cutting plates and a
wooden implement were taken from the kitchen. Since the kitchen adjoins the gymasium area, it is very likely that the same persons were involved in both incidents. On October 20 a window in the Library was broken, and on Jinuary 22 an outside window at the front of the building was broken. In none of the cases was there any evidence that experimental school pupils were involved. This low rate of vandalism contrasts with the significant number of incidents which occurred before introduction of the open-concept program. Seemingly, these experinental pupils now value their scnool building more.

The third area of concern is attitude toward self and school. Data was collected by two different means at two different times in the year. The Michigan Educational Assessment Program Pupil Attitude Questionnaire was given to fourth graders in October, 1973, and the experimental school Smiling Face Test was ad:ninistered in May, 1974, to all students except preschoolers. Copies of the Michigan Assessment printout for the experimental school and total district fourth graders are found in the Appendix.

Since percentages for the school are provided and not for individual pupils, only a rough estimate of the total test population's attitude toward school and toward self can be given. By sumning the individual question percentages and dividing by the number of questions, a percentage for favorable attitude toward school and toward self can be determined. Sixty-3ix percent of the district's fourth graders indicated a favorable attitude toward school, while 58,6 of the experimental school's fourth graders had such an attitude. Regarding attitude toward self, district fourth graders held a 45% favorable rating, while experimental fourth eraders had a $34, \%$ favorable rating. Since the lifichigan Assessment Atisitude Questionnalre has provided such a report only in the past year, comparisons to previous surveys are not possible.

The results suggest that the experimental school staff focus much
attontion on improvement of self-concept of their students as one means of improving achicvement. Interesting individual category results for the experimental students include the following:

* 56\% wish their teachers liked them more
* 40,0 feel nervous when a teacher asks them a question
* La, feel afraid to say anything in class because they may be wrong
* 4 Lis somstines feel they just can't learn
* 68 feel they usually cannot work as fast as others
* 76: feel their teachers are nice.
* 32% wish they did not have to go to school

Whether these attitudes typify the entire student body ot the experimental school or are concentrated in the fourth and perhaps later grades is not known.

The Smiling Face Test required that experimental school pupils make judgments (positive, negative, or neutral) about various elements of the open-concept program. The results are displayed in Table 31.

TABLE 31
Smiling Face Test: percentages

BEST COPY AYIILABLE

$n=134$
Item positive neutral negative no answer

1. Coning to this school 52\% 2028 20
2. What you do at this school 52

31
16
0
3. Eating breakfast at school 60

32 43

10
0
4. Myself as a student 46

14
8
1
G. My other teachers 52 39 8 1
7. My friends at school 81 15 3 1
8. Science at school 41 30 28

1
9. ircading at school

54
63
71
39
37
13
1
10. Math at school

24
11
1
11. The "1nb"
12. Social studies

20
9
1

23
1
-41-
$004 ;$

Iten positive neutra negative no answer

Iten pos	positive	neutra'.	negative	no answer
13. Language	44	40	34	1
14. Physical education	90	6	3	1
15. Music	68	25	6	1
16. Art	73	18	7	2
17. Novies at school	79	25	5	1
18. Getting to choose what I d	do 65	26	7	1
19. Moving arnund a lot	58	30	10	1
20. Kids who break rules	6	21	72	1
21. How much I have leamed this year	66	24	8	1
22. Being at this schcol next year	51	25	23	1
23. Nyself last year	48	33	17	1
24. Myself now	60	28	10	1
25. Career education	60	24	14	1
26. I feel I can be honest on these questions I liked learning about	70	23	6	1

* Hounded off to nearest whole percentage.

A review of this table suggests some positive accomplishments by the program. More children have a positive feeling about themselves than they did a year ago (60%, as compared to $48, \%$). Fewer have a negative feeling about themselves (10% as compared to 17%). Only $10 ;$ have a negative feeling about their ability as a student. This contrasts markedly with the dichigan Assessinent data for fourth graders. Since the Smiling Test data wa3 not sortec as to grade level, direct comparisons cannot be made.

In guneral, the progran seems to be mating some progress in the affective domain. Even though only rough measures have been utilized, the data does suggest some growth in this area.

In April, 1974, selected teachers in the Eastern Upper Peninsula were queried as to their hnowledge of the Open-Concept program and the sources of their information. All elementary teachers as well as junior high teachers in the Sault Sainte Marie School District were surveyred. 75\% of the local teachers returned their questionnaires. A random sample of elementary teachers and all elementary principals in the other school districts of the EUP were surveyed; the rate of return was 57%.

TABLE 32

Characteristics of Experimental Sckool

Percentages of correct responses

Item	$\begin{gathered} \text { In-town } \\ \mathrm{n}=127 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Out-of-town } \\ & n=57 \\ & \hline \end{aligned}$
The number if teachers at the experimental school	52\%	9
The number of aides at the experimental school	47	12
The number of students	65	19
The duration of operation of the experimental program	90	32
The ratio of Indian to non-Indian pupils	55	23

H Nearest whole percentage
As expected, the Sault Sainte Marie teachers were more knowledgeable about these specific items than were outlying teachers.

These same itens were then reviewed as to the outmof-town responses; concentric circles of $25-m i l e$ radius were used to separate school districts, and response:; from teachors within those concentric circles were then tabulated.

TABLE 33
Characteristics of Experimental Selool
Percentnges of correct responses

Item Ta	E 33 $\begin{gathered}n=21 \\ 25^{5}-m i l e \\ n\end{gathered}$	$\begin{aligned} & \text { at. } \\ & n=20 \\ & 50-n i l e \end{aligned}$	$\begin{gathered} n=9 \\ 75^{n-m i l e} \end{gathered}$	$\begin{gathered} n^{27} \\ \text { principals } \end{gathered}$
Number of teachers	0	15	0	29
Number of aides	10	15	0	29
Number of student. 3	24	25	11	0
Years of operation	19	45	33	29
Ratio of Indian to non-Indian pupils	29	25	22	0

Remarkable, the respondents located between 25 and 50 miles from the experimental school were more knowledgeable on most items, whereas one would assume that closer proximity would tend to increase correct responses.

The survey respondents were also asked to indicate from a list of possible objectives those which in fact were the project's objectives. Results for in-town and out-of-town resnondents who completed this section of the questionnaire are presented in Table 34. Fifty-five per cent of the out-of-town respondents did not answer this section of the questionnaire because of apparent lack of information about the program. If their blank responses were included, percentages would be mach lower for them.

TABLE 34
Perception of Program Objectives Porccatages of correct responses

Item \quad\begin{tabular}{c}
$n=125$

In-town

$n=29$

Ont-of-town
\end{tabular}

The staff will cvolve flaxible student 72 panaroment practises
The staff will explore the feasibility of $50 \quad 45$
alternato staffing pattern
$\begin{array}{lll}\text { The staff will introduce early childhood } & 83 & 76\end{array}$
education for preschoolnas
The staff will provide individualized instruction through laboratory settings

Item	$\begin{array}{r} n=125^{\circ} \\ \text { In-town } \end{array}$	$\begin{gathered} n^{20} 29 \\ \text { Out-of-town } \end{gathered}$
The staff will establish Learning centers in Language Arts, Math, Social Studies, and Science	90	86
The staff will increase parental understanding of educational objectives and procedures	89	93
Students will improve knowledge, comprchension, and application in language arts by 0.75 grade level equivalent during the school year	26	35
Students will develop proficiency in gross muscle control and dexterity to a level consistant with chronological age	48	47
Students will value the ability to make simple decisions	73	76

As the data indicates, local and out-of-town teachers exhibit fairIy similar response patterns on this section of the survey.

On the foil items included in this section, response patterns were also fairly similer. Forty-one percent of in-tom respondents and 35% of out-of-town respondents asserted that one objective was to employ team teaching practices weekly. Sixty-one percent of in-town respondents and 65\% of out-of-town respondents indicated that individualized instruction through a language experience approach was a project objective. Likewise, 38\% of in-town and 48\% of out-of-town respondents maintained that a project objective was that students will increase their self-concept by 50, as mea.sured by a standard instrument. In each of these cases, the supposed cbjective was not part of the project's objactives.

Table 35 illustrates the response rates for the $25-m i l e$ concentric circles from the experinental school. The number of respondents who actually attemptad to answar this section is very small, as the n indicate.

TABLE 35
Perception of Program Objectives
Percentages of correct responses

Item	$\begin{aligned} & 25-m i l e \\ & n^{\circ} \times 21 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \text {-mile } \\ n^{2=21} \\ \hline \end{gathered}$	$\begin{gathered} 75 \text { mile } \\ n=4 \end{gathered}$	$\begin{gathered} \text { principals } \\ n=0 \end{gathered}$
The staff will evolve flexible student management practices	91\%	82	100	75
The staff will explore the feasibility of alternate staffing patterns	64	27	67	50
The staff will introduce early childhood education for preschoolers	91	64	67	50
The staff will provide indifidualized instruction through laboratory settings	82	91	100	75
The staff will establish learning crriters in Lunguage Arts, Math, Social Studies, and Science		82	100	75
The staff will increase parental understanding of educational objectives and procedures	100	82	100	100
Students will inprove knowledge, comprehension, and application in language arts by 0.75 grade level equivalent during the school year	36	36	33	25
Students will develop proficiency in gross muscle control and dexterity to a level consistent with chronological age	18	64	67	0
Students will value the ability to make sirple decisions	91	64	100	50

From Table 35 ons gets the inpression that principals are less wellinformed about the experimental program than are the teachers. However, they hed the lowast no-respnnag rato of the groups to this section (42, while the twachers located 75^{\prime} or more miles from the experimental school had the highest no-response rate (73,6).

The next section of the survoy askod respondents to rate the quality of their sources of information about the program. In another sense, it indicatad the major sources of information. The data is reported in Table 36. The best source recoived a rank of 3 , the second best sources a rank of 2, and tho third best source a rank of ons. The rankings were sunmed for all sources and appear in the right-hand side of the table. Thirteen in-tom teachers laft this section blank, and thirteen failed to read the directions and voided their responses. Thirty-seven out-oftown teachers left this section blank, and two subaitted voided sections. TABLE 36

Sources of Information:
Rrinking of Ouality

Rianking of Guality			
Source	$\begin{gathered} n=101 \\ \text { In-tomm } \end{gathered}$	$\begin{gathered} n=25 \\ \text { Qut-of-town } \end{gathered}$	$\begin{aligned} & n=126 \\ & \text { Total } \end{aligned}$
Perzonal visit to experimental site	230	47	177
Viowing a TV program about the experimental school	9	8	17
Reading the experimental school Newsletter	94	4	98
Talking with an experimental teacher	122	26	148
Reading the Sault Schools Superintendent's Bulletin	31	5	36
Reading a local newspaper article about the program	12	14	26
Talcing to an experimental aide	15	0	15
lifetening to a radin program about the c:perinental project	7	2	9
A graduate course in the local area	20	4	24
Talkirg to anothor teacher who actually visited the project	37	17	54
An undercraduats tencher ed course	1	2	3
ralking to an exprimental teacher who fisited your schnol to dicsuss the program	12	5	17
Conmanicating with the experimental principal	50	8	58

TABLE 36 (cont.)

$$
n=101 \quad n=25 \quad n=126
$$

Source

Substitute teaching at the school	6	0	6
Taiking with present or former pupils	11	0	11
Taliking with parents of experimental pupils	5	0	5
Regional in-scrvice conference	0	6	6
Teaching summer school at project	3	0	3
Slida show by experimental principal	3	0	3
Writing original proposal	3	0	3
Talking to former compensatory director	3	0	3
arapevine	0	1	2
Non-profassional schnol woriker in the	0	3	3
past at project sits	0	0	3

It is obvious that the two best sources of information for teachers are a personal visit to the experinental site and a discussion of the program with an experimental school teachor. Other successful informationdistribution mechanisms are the experimental school Newsletter, communication with the project principal, and conversing with a teacher who visited the site.

The last section of the survey involved a judgement by the respondent of the experimental school's procedures and processes. Data was tabulated for all respondents who attenpted to make such judgments, about the frequency of actions, and means were then calculated. These neans were then compared with the neans determined from actual experinental classroon obsarvations (see nbservations of Program Teachers in this report). The results are reporiot in Tablo 37.

TABLE 37
Percentions of frocesses
and Procedures: means

In-town out-af-town
$n^{m}=127$
:---:
means

Item I	$\begin{aligned} & \text { In-town } \\ & n^{2} 127 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Out-of-town } \\ & n=33 \end{aligned}$	Oisserved means
Each child in the experimental program has the same textbook and materials	2.41	2.35	2.19
Many difforent activites go on simultaneously in the learning centers	4.50	4.39	4.94
Children do their own work without help from other children	2.84	2.76	2.94
Children, with their teacher's help, choose their own routine in the centers	s 4.01	4.03	4.75
Children work individually and in small groups at various activities	4.09	4.09	4.88
Children are not supposed to mnoe around the room without asking permission	1.71	1.33	1.00
Experimental teachers spend much time in individualized observing and questioning of students	4.00	3.88	4.75
Experimental teachers prefer that children not tall: when they aro supposed to be working	2.01	1.88	1.06
Experimental teachers group children for lessons directed at specific student needs	3.88	3.52	3.31
Children spontaneousiy discuss each other's work	3.38	3.54	4.56
Children work directly with available manipulative materials	3.97	4.03	1.88
Lessons and assignments are given to the class as a whole	1.94	1.73	1.13
Children exnect experimental teachers to correct all their wor::	2.14	2.30	2.44
Chilaran holp one another	3.76	3.91	4.05
Exelerinental children voluntarily group and retroup thamelves	3.28	3.18	4.69
Experinental teachers try to lreep all children witian their :iight so that they can mate sure childron are doing what they are supposed to do	2.47	2.31	1.44
Fxperinental teachors plan and schedule children's activities throughout the cutire school day	2.75	2.70	1.38

This table indicates that the reaponses from the in-town and out-of-town teachers are remarkably similar. llowever, when one compares their re:ponses with actual classroom observations, differences in sereral categories appear.

Other teachers perceive that experimental students use the same textbook and materials more often than they actually do. Also, the frequency of children helping other children is not perceived to be as high as it actually is. Experimental teachers use individualized observation and questioning of students more frequently than perceived.

Children discuss each other's work more frequently than other teachers imagine. They also group and regroup themselves more frequently than other teachers perceive to be the case. Finally, students do not have their activities scheduled throughout a day as frequently as other teachers believe.

In general, the survey indicates that non-experimental teachers have a reasonable understanding of the experimental school program, especially its objectives and less so its procedures and processes. In-town teachers seem to be much more knowledgeable about the program nan do out-of-toon teachers; the number of blank responses from outside the local district tends to substantiate this judgment.

Initially as a sumary, this section will focus on the stated objectives of the project. Nata has been provided to support the following conclusions:

* The staff has developed alternate staffing patterns.
* The staff has developed flexikie student management practices.
* The staff has introduced early childhood education for preschoolers.
* The staff has provided individualized instruction through laboratory settings
* The staff has established learming centers in Language Arts, Math, Social Studies, and Science. The math and science centers seem to be very affective, in view of cognitive test gains in those areas. The other centers are ineffective in their present arrangment.
* The staff has increased parental understanding of educational objectives and procedures to the desired level.
* Students did not inprove their knowledge, comprehension, and application in language arts by 0.75 grade level equivalent during the school year.
* Students did increase their knowledge, comprehension, and application of basic mathematical concepts by 0.75 grade level equivalent during the school year.
* Students did develop proficiency in gross mascle control and dexterity to a level consistent with chronological age. First grade pupils did not reach the specified level, but neither did the control pupils.
* Students seem to value the ability to make simple decisions. Howover, additional data to support this view must be gathered.
* Students did increase their career awareness.

Obriously the koy area of program nodification is the language arts learning center. A reading radiness and reading development program that is memingful and effective with the experimental school pupils needs to be developed and then implemented. Constant ronitoring of its effectivenes:; by the staff is absolutely necessary.

Reconmendiations

The in-service workshop prior to the beginaing of the school year should focus its attention on the following items:

* Developaent of an effective languago arts approach for the oxperimental pupils.
* Dovelopment of appropriate small-group methods, especially in language arts.
* Refocusing staff meeting to deal with student leaming problems and leaming center irprovenent throughout the year.
* Irprovement of the communication patterns among staff members, and between staff and administration representatives.
* Review of an open-concept philosonhy, so that all staff members may be aware of the types of structure that are appropriate and the types of activities that are most conducive to effective learning.
* Guidance for the student:s who do not seem to adjust easily to such a program.
* Reans of promoting increased parental understanding of the program.
* Rffective behavior modification techrioues for application in an "open school".
* Renchmark assessment processes that are effective and efficient.
* Nodification of leaming centers to make them more attractive to students.
* Frequency of teacher-made assessment instrument usage during the year.
* Increased concern for improvement of pupil self-concept.

In general, the open-concept program has exhibited success in meeting its objectives; its rajor weakness involves the language arts and reading componentis of the program, as well as staff commancation. Since over Lot of the staff was now last year and many new staff members are likely for 1974-75, stafi commanication sems imperative to interrate these nowconors and to insure high positive morale.

APPENDIX

$005:$
-53-
MICHIGAN EDUCATIONAL
ASSESSMENT PROGRAM 1973-74 (YEAR 5)

TABLE 40
Otis-Lennon Mental Ability Test
Post-Tost Scores: Experimental, Control

Grade	Experimental			Control		
	$\underline{\square}$	mean	s.d.	\underline{n}	mean	s.d.
1	18	102.56	10.57	27	103.85	24.50
2	26	102.00	22.92	23	106.73	14.25
3	24	99.58	10.82	32	110.50	34.65
4	23	94.87	13.49	33	107.06	13.28
5	22	93.00	15.64	36	99.89	17.00
6	24	95.08	18.03	28	103.18	14.11

No. \qquad DIPFUSION STUDY SURVEY
A. We wish to gain some background information about you. Please fill in the following three questions.

1. Nale \qquad 2. Grade level of teaching \qquad
Female \qquad
2. No. of years of teaching
\qquad
B. The following questions involve some specific knowledge about the characteristics of the Finlayson School students and staff. Responses should be put in the space before the question.
\qquad 4. The number of teachers at Finlayson School is
(a) $4-6$
(b) 7-9
(c) 10 or more
(d) don't know
\qquad 5. The number of aides (paraprofessionals)at Finlayson School is
(a) 1-4
(b) 5-9
(c) 10 or more
(d) don't know
\qquad 6. The number of students at Finlayson School is
(a) 100-150
(b) 150-200
(c) 200 or more
(d) don't know
__ 7. The Open-Concept Program for Indiar Education at Finlayson School has been in operation
(a) 1 year
(b) 2 jears
(c) 3 years
(d) 4 years or more
(e) don't know
3. The ratio of Indian children to non-Indian students at Finlayson School is approximately
(3) $30 ; 4$ Indian/70; non-Indian
(b) $50 / 50$
(c) $70 / 30$
(d) don't know
C. In thic section we wish to identify your knowledge of the objectives of the Finlayson Project. Check each objective that you know is part of the Finlayson goals.
4. Of the following, the Finlayson Project's goals are:
 as measured by a standard instrument
D. In this section, we wish to identify how you found out about the Open-Concept School for Indian Education (Finlayson's) programs, objectives, and processes. Check (X) your sources of information about the program in column I.

Then rank order the three (3) best sources of information in the next colum, as followa: 1 - the best source; 2 - the next best source; and 3 - the next best.
10. I found out about the Finlayson progran, objectives, and processes from the following sources.

I
II
\qquad (a) a personal visit to Finlayson School
(b) viewing a TV program about the Finlayson School
\qquad
\qquad (c) reading the Finlayson School Newsletter

(d) communicating with a Finlayson teacher by mai?
(e) talking, with a Finlayson teacher
(f) reading the Sault Schools' Superintendent's Bulletin
(g) reading a local newspaper article about the program
(h) talking to a Finlayson aide (paraprofessional)
\qquad (i) listening to a radio program about the Finlayson program
(j) a graduate course offered in the local area
(k) talking to another teacher who personally visited the Finlayson School
(1) an undergraduate teacher education course
(m) talcing to a Finlayson teacher who visited your school to discuss the program
(n) communicating with the finlayson School Principal
(o) Other (ilst) \qquad
-59-
E. In this snction we wish to mea ure your percuption of the Finlaycon program. For each statement, make your choice on the basis of what you know about the program's procedures and procosses.

CIRCL.E the nost anmropriate nuaber for each item according to the following scale:
11. Each child in the Finlayson program has the same textbook and materials.
12. Nany different activites go on simultaneoulsly in the Finlayson Learning centers.
13. Children do their own work without help from other children
14. Children, with their teacher's help, choose their own routine in the centers.
15. Childrea work individually and in srall groups at various activities.
16. Children are not supposed to nove about the room without as'..ing permission.
17. Finlayson teachers spend much time in individualized observing and questioning of students.
18. Finlayson teachers prefer that children not talk when they are supposed to be working.
19. Finlayson teachers group children for lessons directed at specific student needs.
20. Children spontaneously discuss each other's work.
21. Children work directly with available manipulative materials

2?. Lessons and assignments are given to the class as a whole.
23. Childron expect Finlayson teachers to correct all their worl:.
24. Children holp one another
25. Finlayion children voluntarily groun and regroup themselves
26. Finlsycon teachers try to keep all children within their sight so that they can make sure childron are doing what they are supposed to do.
$123 \quad 4 \quad 5$
E. (cont.)
27. Finlayson teachers pinn and schedule children's activities throughout the entire school day.

Jub.

[^0]: * 1.0 indicates close proxdmity, and 7.0 indicates total lack of proximity.

[^1]: * Some English students are assigned to special Commanication Skills program.

[^2]: * Significant at the . 05 level

 Data for grade 5 pupils is found in Table 22. Each school had a statist,ically significant gain in one category: the experimental school in sciance, ard the control school in spelling.

[^3]: * $N=33$ for the control school on these subtests.

[^4]: * $N=21$ for the experimental students
 $* * N=21$ for the experimental subjects and $n=37$ for the controls.

